By Topic

An MLP-based player detection and tracking in broadcast soccer video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heydari, M. ; Dept. of Electron., Comput. & IT, Islamic Azad Univ., Qazvin, Iran ; Moghadam, A.M.E.

This paper addresses the automatic player detection and tracking problem applied to broadcast images of soccer games. We propose an approach for player detection in long view of broadcast soccer video. We detect long view frames using dominant color ratio. We use k-means clustering algorithm for calculating dominant color thresholds. Our method for player detection has two phases: in the first phase we perform a preprocessing for deleting some non-player regions, this is done with knowledge of soccer video domain and morphology operation. Remaining regions will be classified into player or non-player groups with using a Multilayer Perceptron Neural Network as classifier in second phase. Our used feature vector for every region consist of two parts: color value of region in Cb and Cr layers from YCbCr color space and area of the region. Finally we track each player. Experiments show that our method can detect player effectively and with high accuracy.

Published in:

Robotics and Artificial Intelligence (ICRAI), 2012 International Conference on

Date of Conference:

22-23 Oct. 2012