By Topic

Beam Pattern Measurements of Millimeter-Wave Kinetic Inductance Detector Camera With Direct Machined Silicon Lens Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Nitta, T. ; Inst. of Phys., Univ. of Tsukuba, Tsukuba, Japan ; Naruse, M. ; Sekimoto, Y. ; Mitsui, K.
more authors

We have developed 220 and 440-GHz cameras using microwave kinetic inductance detectors (MKIDs) for astronomical observations. The optical system of the MKID camera is based on double-slot antennas and extended hemispherical silicon lens arrays. The lens diameter is three times the target wavelength. The 220-GHz camera and the 440-GHz camera have 9 pixels and 102 pixels, respectively. The silicon lens array has been directly machined using a high-speed spindle on an ultra-precision machine. The shape fabrication error and the surface roughness of the top of the lens were typically less than 10 μm (peak-to-valley) and about 0.7 μm (rms), respectively. The beam patterns of the MKID camera were measured and are in good agreement with the calculations.

Published in:

Terahertz Science and Technology, IEEE Transactions on  (Volume:3 ,  Issue: 1 )