By Topic

Pulsewidth Modulation of Z-Source Inverters With Minimum Inductor Current Ripple

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Tang ; Jiangsu Key laboratory of New Energy Generation and Power Conversion, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China ; Shaojun Xie ; Jiudong Ding

This paper proposes the pulsewidth modulation (PWM) strategy of Z-source inverters (ZSIs) with minimum inductor current ripple. In existing PWM strategy with single-phase shoot-through, the shoot-through time interval is divided into six equal parts, therefore the three phase legs bear the equal shoot-through time interval. In this manner, the allotment and arrangement of the shoot-through state is easy to realize, but the inductor current ripple is not optimized. This causes to use relatively large inductors. In the proposed PWM strategy, the shoot-through time intervals of three phase legs are calculated and rearranged according to the active state and zero state time intervals to achieve the minimum current ripple across the Z-source inductor, while maintaining the same total shoot-through time interval. The principle of the proposed PWM strategy is analyzed in detail, and the comparison of current ripple under the traditional and proposed PWM strategy is given. Simulation and experimental results on the series ZSI are shown to verify the analysis.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:61 ,  Issue: 1 )