By Topic

Resonant grating waveguide structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rosenblatt, David ; Dept. of Phys. of Complex Syst., Weizmann Inst. of Sci., Rehovot, Israel ; Sharon, A. ; Friesem, A.A.

Under certain conditions, a resonance phenomenon can occur in waveguide grating structures. Such structures have multilayer configuration, the most basic of which is comprised of a substrate, a thin dielectric layer or semiconductor waveguide layer, and an additional transparent layer in which a grating is etched. When such a structure is illuminated with an incident light beam, part of the beam is directly transmitted and part is diffracted and subsequently trapped in the waveguide layer. Some of the trapped light is then rediffracted outwards, so that it interferes destructively with the transmitted part of the light beam. At a specific wavelength and angular orientation of the incident beam, the structure “resonates”; namely, complete interference occurs and no light is transmitted. This paper reviews previous investigations on the resonance phenomena and presents analytic and numerical models for evaluating the resonance as a function of the geometric and optical parameters of the structures and incident radiation

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 11 )