By Topic

Adaptive fuzzy control for non-linear dynamical systems based on differential flatness theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
G. G. Rigatos ; Department of Engineering, Harper Adams University College, TF10 8NB, Shropshire, UK

A new approach to adaptive fuzzy control for uncertain non-linear dynamical systems, is proposed. The considered class of systems can be written in the Brunovsky (canonical) form after a transformation of their state variables and control input. The resulting control signal is shown to consist of non-linear elements, which in case of unknown system parameters can be approximated using neurofuzzy networks. An adaptation law for the neurofuzzy approximators can be computed using Lyapunov stability analysis. It is shown that the proposed adaptation law assures stability of the closed loop. Simulation experiments on benchmark non-linear dynamical systems are used to evaluate the performance of the proposed flatness-based adaptive fuzzy control scheme.

Published in:

IET Control Theory & Applications  (Volume:6 ,  Issue: 17 )