By Topic

Real-time control of human coagulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Makin, J.G. ; EECS Dept., Univ. of California, Berkeley, Berkeley, CA, USA ; Narayanan, S.

In previous work, the authors showed that the dynamics of human blood clotting could be fruitfully modelled and simulated as a hybrid system (HS), that is, one with interacting continuous and discrete parts. Here, the authors show that, although a complete analysis of the HS is (computationally) infeasible, analysis and control techniques can indeed be applied to a large, critical subsystem a set of about 100 ordinary differential equations. The theory is outlined behind the control techniques and then demonstrate in a series of simulations their application to control of pathological blood clotting, both hypercoagulatory (factor-V Leiden) and hypocoagulatory (hæmophilia A). In particular, steering is simulated during a clotting event of the crucial bloodæprotein thrombin, via the controlled injection of (recombinant) factor VIII (for hæmophilia) or the anti-coagulant heparin (for FV Leiden). It remains to remedy the shortcomings of this control technique, and to extend it to the remainder of the HS of the previous work; methods for these are proposed, and addressed in a subsequent article.

Published in:

Control Theory & Applications, IET  (Volume:6 ,  Issue: 17 )