Cart (Loading....) | Create Account
Close category search window

On Convergence of Kronecker Graphical Lasso Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsiligkaridis, T. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Hero, A.O. ; Shuheng Zhou

This paper studies iteration convergence of Kronecker graphical lasso (KGLasso) algorithms for estimating the covariance of an i.i.d. Gaussian random sample under a sparse Kronecker-product covariance model and MSE convergence rates. The KGlasso model, originally called the transposable regularized covariance model by Allen [“Transposable regularized covariance models with an application to missing data imputation,” Ann. Appl. Statist., vol. 4, no. 2, pp. 764-790, 2010], implements a pair of $ell_1$ penalties on each Kronecker factor to enforce sparsity in the covariance estimator. The KGlasso algorithm generalizes Glasso, introduced by Yuan and Lin [“Model selection and estimation in the Gaussian graphical model,” Biometrika, vol. 94, pp. 19-35, 2007] and Banerjee [“Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data,” J. Mach. Learn. Res., vol. 9, pp. 485-516, Mar. 2008], to estimate covariances having Kronecker product form. It also generalizes the unpenalized ML flip-flop (FF) algorithm of Dutilleul [“The MLE algorithm for the matrix normal distribution,” J. Statist. Comput. Simul., vol. 64, pp. 105-123, 1999] and Werner [“On estimation of covariance matrices with Kronecker product structure,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 478-491, Feb. 2008] to estimation of sparse Kronecker factors. We establish that the KGlasso iterates converge pointwise to a local maximum of the penalized likelihood function. We derive high dimensional rates of convergence to the true covariance as both the number of samples and the number of variables go to infinity. Our results establish that KGlasso has significantly faster asymptotic convergence than Glasso and FF. Simulations are presented that validate the results of our analysis. For example, for a sparse 10 000 ×10 000 covariance matrix equal to the Kronecker product of two 100- × 100 matrices, the root mean squared error of the inverse covariance estimate using FF is 2 times larger than that obtainable using KGlasso for sample size of n=100.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 7 )

Date of Publication:

April1, 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.