By Topic

Learning Ancestral Atom via Sparse Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aritake, T. ; Waseda Univ., Tokyo, Japan ; Hino, H. ; Murata, N.

Sparse signal models have been the focus of recent research. In sparse coding, signals are represented with a linear combination of a small number of elementary signals called atoms, and the collection of atoms is called a dictionary. Design of the dictionary has strong influence on the signal approximation performance. Recently, to put prior information into dictionary learning, several methods imposing a certain kind of structure on the dictionary are proposed. In this paper, like wavelet analysis, a dictionary for sparse signal representation is assumed to be generated from an ancestral atom, and a method for learning the ancestral atom is proposed. The proposed algorithm updates the ancestral atom by iterating dictionary update in unstructured dictionary space and projection of the updated dictionary onto the structured dictionary space. The algorithm allows a simple differential geometric interpretation. Numerical experiments are performed to show the characteristics and advantages of the proposed algorithm.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:7 ,  Issue: 4 )