By Topic

A Stochastic Shortest Path Model to Minimize the Reading Time in DFSA-Based RFID Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alcaraz, J.J. ; Dept. of Inf. & Commun. Technol., Tech. Univ. of Cartagena (UPCT), Cartagena, Spain ; Vales-Alonso, J. ; Egea-Lopez, E. ; Garcia-Haro, J.

RFID systems implementing Dynamic Frame Slotted Aloha (DFSA) can adjust the number of identification rounds (slots) within an inventory cycle (frame). The usual approach to reduce the identification time of the tag population is to select the frame size attaining the highest throughput in the frame. However, it is more accurate to minimize the identification time of all the tags considering an indefinite long decision horizon. This is done in this paper by means of a Stochastic Shortest Path (SSP) formulation that incorporates capture effect and differentiation among slot durations. Our results show that the optimal policy is even faster than previous approaches.

Published in:

Communications Letters, IEEE  (Volume:17 ,  Issue: 2 )