By Topic

Telephone handset identification by feature selection and sparse representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yannis Panagakis ; Dept. of Inf., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece ; Constantine Kotropoulos

Speech signals convey information not only for the speakers' identity and the spoken language, but also for the acquisition devices used during their recording. Therefore, it is reasonable to perform acquisition device identification by analyzing the recorded speech signal. To this end, the random spectral features (RSFs) and the labeled spectral features (LSFs) are proposed as intrinsic fingerprints suitable for device identification. The RSFs and the LSFs are extracted by applying unsupervised and supervised feature selection to the mean spectrogram of each speech signal, respectively. State-of-the-art identification accuracy of 97.58% has been obtained by employing LSFs on a set of 8 telephone handsets, from Lincoln-Labs Handset Database (LLHDB).

Published in:

2012 IEEE International Workshop on Information Forensics and Security (WIFS)

Date of Conference:

2-5 Dec. 2012