By Topic

Structural link prediction using community information on Twitter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Valverde-Rebaza, J. ; Inst. de Cienc. Mat. e de Comput., Univ. de Sao Paulo - Campus de Sao Carlos, Sao Carlos, Brazil ; de Andrade Lopes, A.

Currently, social networks and social media have attracted increasing research interest. In this context, link prediction is one of the most important tasks since it can predict the existence or missing of a future relation between user members in a social network. In this paper, we describe experiments to analyze the viability of applying the within and inter cluster (WIC) measure for predicting the existence of a future link on a large-scale online social network. Compared with undirected social networks, directed social networks have received less attention and still are not well understood, mainly due to the occurrence of asymmetric links. The WIC measure combines the local structural similarity information and community information to improve link prediction accuracy. We compare the WIC measure with classical measures based on local structural similarities, using real data from Twitter, a directed and asymmetric large-scale online social network. Our experiments show that the WIC measure can be used efficiently on directed and asymmetric large-scale networks. Moreover, it outperforms all compared measures employed for link prediction.

Published in:

Computational Aspects of Social Networks (CASoN), 2012 Fourth International Conference on

Date of Conference:

21-23 Nov. 2012