By Topic

A hybrid algorithm based on neural-fuzzy system for interpretation of dissolved gas analysis in power transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Morteza Rajabimendi ; Electron. & Commun. Eng. Dept., De La Salle Univ. Philippines, Manila, Philippines ; Elmer P. Dadios

Dissolved gas analysis (DGA) is a well-known method for diagnosis of incipient faults in power transformers. Some traditional criteria of the dissolved gas analysis are published in standards and technical reports which are still in use in many electrical utilities around the world. This paper describes a hybrid algorithm using neural-fuzzy system for incipient fault detection in power transformers. In order to reach a higher degree of reliability with respect to each technique individually, the proposed method is based on the combined use of six standardized criteria. Six neural networks are trained based on randomly generated data considering the individual standards and the results are mixed to give the better results. The proposed method is tested using realistic data. The experiments results showed that the proposed algorithm is accurate, reliable and robust in identifying incipient faults in power transformers.

Published in:

TENCON 2012 - 2012 IEEE Region 10 Conference

Date of Conference:

19-22 Nov. 2012