By Topic

Small virtual channel routers on FPGAs through block RAM sharing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwa, J. ; ECE Dept., Univ. of British Columbia, Vancouver, BC, Canada ; Aamodt, T.M.

As larger System-on-Chip (SoC) designs are attempted on Field Programmable Gate Arrays (FPGAs), the need for a low cost and high performance Network-on-Chip (NoC) grows. Virtual Channel (VC) routers provide desirable traits for an NoC such as higher throughput and deadlock prevention but at significant resource cost when implemented on an FPGA. This paper presents an FPGA specific optimization to reduce resource utilization. We propose sharing Block RAMs between multiple router ports to store the high logic resource consuming virtual channel buffers and present BRS (Block RAM Split), a router architecture that implements the proposed optimization. We evaluate the performance of the modifications using synthetic traffic patterns on mesh and torus networks and synthesize the NoCs to determine overall resource usage and maximum clock frequency. We find that the additional logic to support sharing Block RAMs has little impact on Adaptive Logic Module (ALM) usage in designs that currently use Block RAMs while at the same time decreasing Block RAM usage by as much as 40%. In comparison to designs that do not use Block RAMs, a 71% reduction in ALM usage is shown to be possible. This resource reduction comes at the cost of a 15% reduction in the saturation throughput for uniform random traffic and a 50% decrease in the worst case neighbour traffic pattern on a mesh network. The throughput penalty from the neighbour traffic pattern can be reduced to 3% if a torus network is used. In all cases, there is little change in network latency at low load. BRS is capable of running at 161.71 MHz which is a decrease of only 4% from the base virtual channel router design.

Published in:

Field-Programmable Technology (FPT), 2012 International Conference on

Date of Conference:

10-12 Dec. 2012