By Topic

Design space exploration and implementation of a high performance and low area Coarse Grained Reconfigurable Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Dongkwan Suh ; SAIT, Samsung Electron., Yongin, South Korea ; Kiseok Kwon ; Sukjin Kim ; Soojung Ryu
more authors

Coarse Grained Reconfigurable Architectures (CGRAs) have played a key role in the area of domain specific processors due to their programmability and runtime reconfigurability. The Coarse Grained Array (CGA) structure enables target designs to achieve high performance, but it is easy to fall into over-design in term of area. Moreover, the network overhead between the function units (FUs) seriously degrades its clock speed. In this paper, we propose a high performance CGRA that facilitates design space exploration (DSE) to reduce these overheads. It employs a concept of building blocks, named mini cores, to mitigate overhead involved in DSE that aims to achieve high clock speed and small area in the target design. The proposed approach reduces the design time more than 100 times compared with previous design. Experimental results show that the implemented architecture reduces logic area by 14.38% and improves clock frequency by 59.34% without performance loss.

Published in:

Field-Programmable Technology (FPT), 2012 International Conference on

Date of Conference:

10-12 Dec. 2012