By Topic

Heterogeneous configuration memory scrubbing for soft error mitigation in FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ju-Yueh Lee ; Electr. Eng. Dept., Univ. of California, Los Angeles, Los Angeles, CA, USA ; Cheng-Ru Chang ; Naifeng Jing ; Juexiao Su
more authors

In this paper, we present HCS - Heterogeneous CRAM Scrubbing - for FPGAs. By utilizing stochastic fault modeling for SEUs in CRAM, we present a quantitative estimate of system MTTF improvement through CRAM scrubbing. HCS then leverages the fact that different SEUs have unequal effects on the circuit system operation, and thus the CRAM bits can be scrubbed at different rates based on the sensitivity of the bits to the circuit system failures. To maximize the improvement on system MTTF for a given circuit system, we present a dynamic programming algorithm which solves the problem efficiently and effectively. Through a detailed case study on system level study by an H.264/AVC decoder implemented on a Xilinx Virtex-5 FPGA, we show an estimation of 60% MTTF improvement by HCS over the existing homogeneous CRAM scrubbing method, while contributing virtually no area, performance and power overhead to the system.

Published in:

Field-Programmable Technology (FPT), 2012 International Conference on

Date of Conference:

10-12 Dec. 2012