By Topic

An efficient iterative method for basis pursuit adaptive filters for sparse systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steven L. Grant ; Missouri Univ. of Sci. & Technol., Rolla, MO, USA ; Pratik Shah ; Jacob Benesty

The “proportionate” family of adaptive filters has been in use over the past decade. Their fast convergence for sparse systems makes them particularly useful in the network echo canceller application. Recently, an iterative form of the proportionate affine projection algorithm (PAPA), derived from the basic principles of basis pursuit, has been shown to have remarkably fast convergence for such sparse systems. The number of samples for convergence is proportional to the sparseness of the system which means that often full convergence occurs in fewer samples than the length of the system's impulse response. Here, we introduce a lower complexity implementation with the same performance that is an iterative version of proportionate normalized least mean squares (PNLMS).

Published in:

Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific

Date of Conference:

3-6 Dec. 2012