Cart (Loading....) | Create Account
Close category search window
 

Expansion of training texts to generate a topic-dependent language model for meeting speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Egashira, K. ; Nagasaki Univ., Nagasaki, Japan ; Kojima, K. ; Yamashita, M. ; Yamauchi, K.
more authors

This paper proposes expansion methods for training texts (baseline) to generate a topic-dependent language model for more accurate recognition of meeting speech. To prepare a universal language model that can cope with the variety of topics discussed in meetings is very difficult. Our strategy is to generate topic-dependent training texts based on two methods. The first is text collection from web pages using queries that consist of topic-dependent confident terms; these terms were selected from preparatory recognition results based on the TF-IDF (TF; Term Frequency, IDF; Inversed Document Frequency) values of each term. The second technique is text generation using participants' names. Our topic-dependent language model was generated using these new texts and the baseline corpus. The language model generated by the proposed strategy reduced the perplexity by 16.4% and out-of-vocabulary rate by 37.5%, respectively, compared with the language model that used only the baseline corpus. This improvement was confirmed through meeting speech recognition as well.

Published in:

Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific

Date of Conference:

3-6 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.