By Topic

Geographical classification of Virgin Olive Oils by combining the electronic nose and tongue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Haddi, Z. ; Phys. Dept., Moulay Ismail Univ., Meknes, Morocco ; Boughrini, M. ; Ihlou, S. ; Amari, A.
more authors

Although the great interest of development of performed gas and liquid sensors, lack of cross-sensitivity still remains the major drawback of electronic sensing systems such as electronic nose and tongue. We propose here an approach aimed at overcoming this shortcoming. So a performed data fusion method of electronic nose and tongue was used in order to classify five Virgin Olive Oils (VOOs) picked up from five Moroccan geographical areas. The electronic nose instrument consists of five commercial available MOS TGS gas sensors and the electronic tongue was designed using four voltammetric electrodes. Two techniques, i.e., Principal Component Analysis (PCA) and Support Vector Machines (SVMs) were used to develop classification models using as inputs specific features extracted from the collected sensor signals. Great enhancement in successful discrimination between all VOOs was achieved when compared to the individual systems due to a performed low-level of abstraction data fusion.

Published in:

Sensors, 2012 IEEE

Date of Conference:

28-31 Oct. 2012