Cart (Loading....) | Create Account
Close category search window
 

A novel multiple-channel active noise control approach with neural secondary-path model for interior acoustic noise attenuation of railway train systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cho, H.C. ; Sch. of Electr. & Electron. Eng., Ulsan Coll., Ulsan, South Korea ; Park, S.W. ; Lee, K.S. ; Kim, N.H.

Interior noise cancellation for railway train systems is an important means of enhancing passenger comfort and quality of service. This study proposes a novel active noise control (ANC) approach that uses an finite impulse response (IIR) filter and neural network techniques to effectively reduce interior noise. The authors construct a multiple-channel IIR filter module that is a linearly augmented framework with a generic IIR model to generate a primary control signal. A three-layer perceptron neural network is employed for establishing a secondary-path model to represent air channels among noise fields. Since the IIR module and neural network are connected in series, the output of an IIR filter is transferred forward to the neural model to generate a final ANC signal. A gradient descent optimisation-based learning algorithm is analytically derived for the optimal selection of the ANC parameter vectors. Moreover, re-estimation of partial parameter vectors in the ANC system is proposed for online learning. Sufficient stability conditions are derived for the proposed ANC system. Lastly, the authors present the results of a numerical study to test their ANC methodology with realistic interior noise measurement obtained from Korean railway trains.

Published in:

Signal Processing, IET  (Volume:6 ,  Issue: 8 )

Date of Publication:

October 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.