System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Design of low peak-to-average power ratio transceiver with enhanced link quality for coded single-carrier frequency division multiple access system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deng, J.-H. ; Dept. of Commun. Eng., Yuan Ze Univ., Chungli, Taiwan ; Liao, S.-M. ; Huang, S.-Y.

A new low peak-to-average power ratio (PAPR) transceiver is proposed for the coded single-carrier frequency division multiple access (SC-FDMA) system over frequency selective fading channels. By exploiting the constant envelope of the Chu-sequence in both frequency and time domains, the parallel spreading scheme and M-ary cyclic shift mapping technique can support the coded SC-FDMA system with a low PAPR for transmission at a high data rate. Interleaved time and frequency domain orthogonal modulation can increase the frequency diversity gain through the frequency domain equaliser and the time domain despreader. Moreover, the maximum likelihood rule is designed to detect the M-ary mapping data, which can provide M-ary gain to improve system performance. Simulation results reveal that the proposed high-rate coded SC-FDMA system can provide a lower PAPR and a better bit error rate (BER) performance than the conventional interleaved SC-FDMA system.

Published in:

Communications, IET  (Volume:6 ,  Issue: 15 )