By Topic

Economic Analysis and Power Management of a Small Autonomous Hybrid Power System (SAHPS) Using Biogeography Based Optimization (BBO) Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bansal, A.K. ; Electr. Eng. Dept., Poornima Group of Colleges, Jaipur, India ; Kumar, R. ; Gupta, R.A.

In this study, Biogeography Based Optimization (BBO) algorithm is developed for the prediction of the optimal sizing coefficient of Small Autonomous Hybrid Power System (SAHPS) in remote areas. BBO algorithm is used to evaluate optimal component sizing and operational strategy by minimizing the total cost of SAHPS, while guaranteeing the availability of energy. Due to the complexity of the SAHPS design with nonlinear integral planning, BBO algorithm is used to solve the problem. The developed BBO Algorithm has been applied to design the wind/PV/hydro hybrid energy systems to supply a colony located in the area of Jaipur, Rajasthan (India) during the period of January, 2010 to January 2011. It is clear from the results that the proposed BBO method has excellent convergence property, requires less computational time and can avoid the shortcoming of premature convergence of other optimization techniques to obtain a better solution.

Published in:

Smart Grid, IEEE Transactions on  (Volume:4 ,  Issue: 1 )