By Topic

Phase Contrast X-Ray Imaging Signatures for Security Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Erin A. Miller ; Pacific Northwest National Laboratory, Richland, WA, USA ; Timothy A. White ; Benjamin S. McDonald ; Allen Seifert

Differential phase contrast imaging with a grating interferometer is a promising new radiographic technique providing three distinct contrast mechanisms-absorption, phase, and scatter (or dark field)-using a conventional X-ray tube source. We examine the signatures available in these three contrast mechanisms with attention towards potential security applications. We find that the scatter mode is uniquely sensitive to textured materials, potentially leading to enhanced material discrimination through the use of multiple contrast modes. We find that scatter signal in our imaging system increases as texture size is reduced from 800 μm to 7 μm. This range spans the transition from features that are resolved in the image to those residing below the system resolution, and corresponds to length scales of known texture or density variations in several common explosives.

Published in:

IEEE Transactions on Nuclear Science  (Volume:60 ,  Issue: 1 )