By Topic

Optimal Self-Adaptive QoS Resource Management in Interference-Affected Multicast Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baccarelli, E. ; Dept. of Inf., Electr. & Telecommun. (DIET) Eng., Sapienza Univ. of Rome, Rome, Italy ; Cordeschi, N. ; Polli, V.

In this paper, we focus on the quality-of-service (QoS)-constrained jointly optimal congestion control, network coding, and adaptive distributed power control for connectionless wireless networks affected by multiple access interference (MAI). The goal is to manage the available network resources, so as to support multiple multicast sessions with QoS requirements when intrasession network coding (NC) is allowed. To cope with the nonconvex nature of the resulting cross-layer optimization problem, we propose a two-level decomposition that provides the means to attain the optimal solution through suitable relaxed convex versions of its comprising subproblems. Sufficient conditions for the equivalence of the primary nonconvex problem and its related convex version are derived, occurrence of such conditions investigated, and performance with respect to conventional routing-based layered solutions analyzed. Moreover, we develop a distributed algorithm to compute the actual solution of the resource allocation problem that quickly adapts to network time-evolutions. Performance of this algorithm and its adaptivity are evaluated in the presence of varying network/fading conditions and noisy measurements.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 6 )