By Topic

A Multiagent Q-Learning-Based Optimal Allocation Approach for Urban Water Resource Management System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianjun Ni ; Changzhou Key Lab. of Sensor Networks & Environ. Sensing, Hohai Univ., Changzhou, China ; Minghua Liu ; Li Ren ; Yang, S.X.

Water environment system is a complex system, and an agent-based model presents an effective approach that has been implemented in water resource management research. Urban water resource optimal allocation is a challenging and critical issue in water environment systems, which belongs to the resource optimal allocation problem. In this paper, a novel approach based on multiagent Q-learning is proposed to deal with this problem. In the proposed approach, water users of different regions in the city are abstracted into the agent-based model. To realize the cooperation among these stakeholder agents, a maximum mapping value function-based Q-learning algorithm is proposed in this study, which allows the agents to self-learn. In the proposed algorithm, an adaptive reward value function is used to improve the performance of the multiagent Q-learning algorithm, where the influence of multiple factors on the optimal allocation can be fully considered. The proposed approach can deal with various situations in urban water resource allocation. The experimental results show that the proposed approach is capable of allocating water resource efficiently and the objectives of all the stakeholder agents can be successfully achieved.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 1 )