By Topic

Contextual Subpixel Mapping of Hyperspectral Images Making Use of a High Resolution Color Image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zahid Mahmood ; IBBT-Vision Lab, Department of Physics, University of Antwerp, Belgium ; Muhammad Awais Akhter ; Guy Thoonen ; Paul Scheunders

This paper describes a hyperspectral image classification method to obtain classification maps at a finer resolution than the image's original resolution. We assume that a complementary color image of high spatial resolution is available. The proposed methodology consists of a soft classification procedure to obtain landcover fractions, followed by a subpixel mapping of these fractions. While the main contribution of this article is in fact the complete multisource framework for obtaining a subpixel map, the major novelty of this subpixel mapping approach is the inclusion of contextual information, obtained from the color image. Experiments, conducted on two hyperspectral images and one real multi source data set, show excellent results, when compared to classification of the hyperspectral data only. The advantage of the contextual approach, compared to conventional subpixel mapping approaches, is clearly demonstrated.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 2 )