By Topic

Critical Nitrogen Curve and Remote Detection of Nitrogen Nutrition Index for Corn in the Northwestern Plain of Shandong Province, China

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pengfei Chen ; State Key Lab. of Resources & Environ. Inf. Syst., Inst. of Geogr. Sci. & Natural Resources Res., Beijing, China ; Jihua Wang ; Wenjiang Huang ; Tremblay, N.
more authors

The nitrogen nutrition index (NNI) is calculated from the measured N concentration and the critical nitrogen (N) curve. It can be used to determine the N required by a crop and is helpful for optimizing N application in the field. Our objectives were to validate the existing corn critical N curve for the northwestern plain of Shandong Province and to design a more accurate remote detection method for the NNI. For this purpose, field measurements were conducted weekly to acquire the biomass and N concentrations during the corn growing season of 2011. Additionally, nearly 60 corn canopy spectra were collected during field campaigns. First, limiting and non-limiting N points were selected from sampled data, and they were used to validate the existing critical N curve. Second, an NNI estimation model based on a Principal Component Analysis method and Back Propagation Artificial Neural Network (PCA-BP-ANN) model was established. The collected canopy spectra and corresponding NNI were used to compare the performances of the above mentioned method and other for NNI estimation. The results showed that the N curve proposed in the literature is suitable for the study region. Among the three remote detection methods, PCA-BP-ANN provided the best results with highest R value and lowest root mean square error value.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 2 )