Cart (Loading....) | Create Account
Close category search window
 

A CMOS-Process-Compatible ZnO-Based Charge-Trap Flash Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Yujeong Seo ; Sch. of Electr. Eng., Korea Univ., Seoul, South Korea ; Min Yeong Song ; Ho-Myoung An ; Tae Geun Kim

ZnO-based charge-trap Flash technology using a resistive switching mechanism is demonstrated for next-generation nonvolatile memory. This device consists of metal/ZnO/nitride/oxide/silicon in order to make use of the electrical transport in the ZnO resistive switching layer. Compared to the previous devices with perovskite oxide materials used as a conduction path, the proposed device shows faster switching speeds (10 ns/100 μs), lower operation voltages ( ±7 V) for the program/erase ( P/E) states, and higher endurance (106 P/E cycles), along with comparable retention properties.

Published in:

Electron Device Letters, IEEE  (Volume:34 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.