By Topic

Cloud-Based Image Coding for Mobile Devices—Toward Thousands to One Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huanjing Yue ; Tianjin University, Nankai, Tianjin, P.R. China ; Xiaoyan Sun ; Jingyu Yang ; Feng Wu

Current image coding schemes make it hard to utilize external images for compression even if highly correlated images can be found in the cloud. To solve this problem, we propose a method of cloud-based image coding that is different from current image coding even on the ground. It no longer compresses images pixel by pixel and instead tries to describe images and reconstruct them from a large-scale image database via the descriptions. First, we describe an input image based on its down-sampled version and local feature descriptors. The descriptors are used to retrieve highly correlated images in the cloud and identify corresponding patches. The down-sampled image serves as a target to stitch retrieved image patches together. Second, the down-sampled image is compressed using current image coding. The feature vectors of local descriptors are predicted by the corresponding vectors extracted in the decoded down-sampled image. The predicted residual vectors are compressed by transform, quantization, and entropy coding. The experimental results show that the visual quality of reconstructed images is significantly better than that of intra-frame coding in HEVC and JPEG at thousands to one compression .

Published in:

IEEE Transactions on Multimedia  (Volume:15 ,  Issue: 4 )