By Topic

Genetic based feed-forward neural network training for chaff cluster detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hansoo Lee ; Dept. of Electr. Eng., Pusan Nat. Univ., Busan, South Korea ; Jungwon Yu ; Yeongsang Jeong ; Sungshin Kim

Data classification is one of the most important and fundamental problems in many decision making tasks. As traditional methods for data classification, discriminant analysis, k-nearest neighbor (k-NN) and support vector machine (SVM) is widely used. Also, artificial neural net-works (ANN) have emerged as an important tool for data classification. In this paper, we propose a learning method of ANN for data classification by combining genetic algorithm (GA) and performance criterion (PC). We can prevent ANN from trapping in local minimum by using GA and also avoid over-fitting problems of training data by using PC. The data used in the simulations has four attribute and can be classified by two classes. We compare the classification performance of BP learning, SVM and proposed learning method by using the k-fold cross validation technique. Among the methods used in the simulations, we can demonstrate that our proposed method shows the best performance.

Published in:

Fuzzy Theory and it's Applications (iFUZZY), 2012 International Conference on

Date of Conference:

16-18 Nov. 2012