Cart (Loading....) | Create Account
Close category search window
 

Influence of transparent coating hardness on laser-generated ultrasonic waves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo, Yuning ; Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072, China and The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Xi'an, China ; Yang, Dexing ; Feng, Wen ; Chang, Ying

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4773533 

Numerical models are established to investigate the influence of transparent coating hardness on the laser-generated thermoelastic force source and ultrasonic waves in coating-substrate systems by using finite element method. With the increase of coating hardness, the characteristic of longitudinal wave in substrate is more obvious due to the gradual increase of reactive force produced by coating constraint; the directivity patterns of longitudinal wave show that the energy concentration area transfers from bilateral area to the axial direction area gradually. Therefore, the directivity pattern can be regulated to obtain the better ultrasonic signals by coating different hardness materials. It is significant for further development of the experiment in composite evaluation and in extreme condition.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 2 )

Date of Publication:

Jan 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.