Cart (Loading....) | Create Account
Close category search window
 

Mechanical properties and scaling laws of nanoporous gold

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sun, Xiao-Yu ; AML and CMM, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China ; Xu, Guang-Kui ; Li, Xiaoyan ; Feng, Xi-Qiao
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4774246 

Nanoporous metals are a class of novel nanomaterials with potential applications in many fields such as sensing, catalysis, and fuel cells. The present paper is aimed to investigate atomic mechanisms associated with the uniaxial tensile deformation behavior of nanoporous gold. A phase field method is adopted to generate the bicontinuous open-cell porous microstructure of the material. Molecular dynamics simulations then reveal that the uniaxial tensile deformation in such porous materials is accompanied by an accumulation of stacking faults in ligaments along the loading direction and their junctions with neighboring ligaments, as well as the formation of Lomer–Cottrell locks at such junctions. The tensile strain leads to progressive necking and rupture of some ligaments, ultimately resulting in failure of the material. The simulation results also suggest scaling laws for the effective Young's modulus, yield stress, and ultimate strength as functions of the relative mass density and average ligament size in the material.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 2 )

Date of Publication:

Jan 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.