By Topic

Discrete Signal Processing on Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sandryhaila, A. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Moura, J.M.F.

In social settings, individuals interact through webs of relationships. Each individual is a node in a complex network (or graph) of interdependencies and generates data, lots of data. We label the data by its source, or formally stated, we index the data by the nodes of the graph. The resulting signals (data indexed by the nodes) are far removed from time or image signals indexed by well ordered time samples or pixels. DSP, discrete signal processing, provides a comprehensive, elegant, and efficient methodology to describe, represent, transform, analyze, process, or synthesize these well ordered time or image signals. This paper extends to signals on graphs DSP and its basic tenets, including filters, convolution, z-transform, impulse response, spectral representation, Fourier transform, frequency response, and illustrates DSP on graphs by classifying blogs, linear predicting and compressing data from irregularly located weather stations, or predicting behavior of customers of a mobile service provider.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 7 )