Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Joint Sensing and Power Allocation in Nonconvex Cognitive Radio Games: Nash Equilibria and Distributed Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scutari, G. ; Dept. of Electr. Eng., State Univ. of New York at Buffalo, Buffalo, NY, USA ; Jong-Shi Pang

In this paper, we propose a novel class of Nash problems for cognitive radio (CR) networks, modeled as Gaussian frequency-selective interference channels, wherein each secondary user (SU) competes against the others to maximize his own opportunistic throughput by choosing jointly the sensing duration, the detection thresholds, and the vector power allocation. The proposed general formulation allows us to accommodate several (transmit) power and (deterministic/probabilistic) interference constraints, such as constraints on the maximum individual and/or aggregate (probabilistic) interference tolerable at the primary receivers. To keep the optimization as decentralized as possible, global (coupling) interference constraints are imposed by penalizing each SU with a set of time-varying prices based upon his contribution to the total interference; the prices are thus additional variable to optimize. The resulting players' optimization problems are nonconvex; moreover, there are possibly price clearing conditions associated with the global constraints to be satisfied by the solution. All this makes the analysis of the proposed games a challenging task; none of classical results in the game theory literature can be successfully applied. The main contribution of this paper is to develop a novel optimization-based theory for studying the proposed nonconvex games; we provide a comprehensive analysis of the existence and uniqueness of a standard Nash equilibrium, devise alternative best-response based algorithms, and establish their convergence. Some of the proposed algorithms are totally distributed and asynchronous, whereas some others require limited signaling among the SUs (in the form of consensus algorithms) in favor of better performance; overall, they are thus applicable to a variety of CR scenarios, either cooperative or noncooperative, which allows the SUs to explore the existing tradeoff between signaling and performance.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 7 )