By Topic

A Linear Inverse Scattering Algorithm for Radar Imaging in Multipath Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gennarelli, G. ; Inst. for the Electromagn. Sensing of the Environ., Naples, Italy ; Soldovieri, F.

This letter deals with the electromagnetic imaging in the presence of multipath propagation of interest for through-wall and urban sensing scenarios. The 2-D tomographic approach here presented combines a linear inverse scattering model, based on the Kirchhoff approximation, with the finite-difference time-domain (FDTD) technique. In particular, FDTD is exploited to evaluate the incident field and Green's function in noncanonical scenarios, so that the kernel of the linear integral equation is completely built. After, an inversion scheme based on the truncated singular value decomposition is applied to obtain a regularized solution of the problem. Numerical results demonstrate that the proposed approach yields well-focused images free of multipath ghosts, thus allowing to discriminate the actual target position. Moreover, it permits to highlight the capabilities offered by multipath exploitation such as improved crossrange resolution and detection of targets in the non-line-of-sight region of the radar.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 5 )