By Topic

Durable Queries over Historical Time Series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hao Wang ; Univ. of Hong Kong, Hong Kong, China ; Yilun Cai ; Yin Yang ; Shiming Zhang
more authors

This paper studies the problem of finding objects with durable quality over time in historical time series databases. For example, a sociologist may be interested in the top 10 web search terms during the period of some historical events; the police may seek for vehicles that move close to a suspect 70 percent of the time during a certain time period and so on. Durable top-k (DTop-k) and nearest neighbor (DkNN) queries can be viewed as natural extensions of the standard snapshot top-k and NN queries to timestamped sequences of values or locations. Although their snapshot counterparts have been studied extensively, to our knowledge, there is little prior work that addresses this new class of durable queries. Existing methods for DTop-k processing either apply trivial solutions, or rely on domain-specific properties. Motivated by this, we propose efficient and scalable algorithms for the DTop-k and DkNN queries, based on novel indexing and query evaluation techniques. Our experiments show that the proposed algorithms outperform previous and baseline solutions by a wide margin.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:26 ,  Issue: 3 )