By Topic

Scalable and Accurate Prediction of Availability of Atomic Web Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Silic, M. ; Fac. of Electr. Eng. & Comput., Univ. of Zagreb, Zagreb, Croatia ; Delac, G. ; Krka, I. ; Srbljic, S.

The modern information systems on the Internet are often implemented as composite services built from multiple atomic services. These atomic services have their interfaces publicly available while their inner structure is unknown. The quality of the composite service is dependent on both the availability of each atomic service and their appropriate orchestration. In this paper, we present LUCS, a formal model for predicting the availability of atomic web services that enhances the current state-of-the-art models used in service recommendation systems. LUCS estimates the service availability for an ongoing request by considering its similarity to prior requests according to the following dimensions: the user's and service's geographic location, the service load, and the service's computational requirements. In order to evaluate our model, we conducted experiments on services deployed in different regions of the Amazon cloud. For each service, we varied the geographic origin of its incoming requests as well as the request frequency. The evaluation results suggest that our model significantly improves availability prediction when all of the LUCS input parameters are available, reducing the prediction error by 71 percent compared to the current state-of-the-art.

Published in:

Services Computing, IEEE Transactions on  (Volume:7 ,  Issue: 2 )