By Topic

Software effort prediction using unsupervised learning (clustering) and functional link artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Benala, T.R. ; Dept. Of Comput. Sci. & Eng., Anil Neerukonda Inst. Of Technol. & Sci., Visakhapatnam, India ; Dehuri, S. ; Mall, R. ; ChinnaBabu, K.

Software cost estimation continues to be an area of concern for managing of software development industry. We use unsupervised learning (e.g., clustering algorithms) combined with functional link artificial neural networks for software effort prediction. The unsupervised learning (clustering) indigenously divide the input space into the required number of partitions thus eliminating the need of ad-hoc selection of number of clusters. Functional link artificial neural networks (FLANNs), on the other hand is a powerful computational model. Chebyshev polynomial has been used in the FLANN as a choice for functional expansion to exhaustively study the performance. Three real life datasets related to software cost estimation have been considered for empirical evaluation of this proposed method. The experimental results show that our method could significantly improve prediction accuracy of conventional FLANN and has the potential to become an effective method for software cost estimation.

Published in:

Information and Communication Technologies (WICT), 2012 World Congress on

Date of Conference:

Oct. 30 2012-Nov. 2 2012