By Topic

Comparison of Joint Space and End Point Space Robotic Training Modalities for Rehabilitation of Interjoint Coordination in Individuals With Moderate to Severe Impairment From Chronic Stroke

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elizabeth B. Brokaw ; Catholic University of America, Washington, DC, USA ; Rahsaan J. Holley ; Peter S. Lum

We have developed a novel robotic modality called Time Independent Functional Training (TIFT) that provides focused retraining of interjoint coordination after stroke. TIFT was implemented on the ARMin III exoskeleton and provides joint space walls that resist movement patterns that are inconsistent with the targeted interjoint coordination pattern. In a single test session, ten moderate to severely impaired individuals with chronic stroke practiced synchronous shoulder abduction and elbow extension in TIFT and also in a comparison mode commonly used in robotic therapy called end point tunnel training (EPTT). In EPTT, error is limited by forces applied to the hand that are normal to the targeted end point trajectory. The completion percentage of the movements was comparable between modes, but the coordination patterns used by subjects differed between modes. In TIFT, subjects performed the targeted pattern of synchronous shoulder abduction and elbow extension, while in EPTT, movements were completed with compensatory strategies that incorporated the flexor synergy (shoulder abduction with elbow flexion) or the extensor synergy (shoulder adduction with elbow extension). There were immediate effects on free movements, with TIFT resulting in larger improvements in interjoint coordination than EPTT. TIFT's ability to elicit normal coordination patterns merits further investigation into the effects of longer duration training.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:21 ,  Issue: 5 )