System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Lossy Joint Source-Channel Coding in the Finite Blocklength Regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kostina, V. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Verdu, S.

This paper finds new tight finite-blocklength bounds for the best achievable lossy joint source-channel code rate, and demonstrates that joint source-channel code design brings considerable performance advantage over a separate one in the nonasymptotic regime. A joint source-channel code maps a block of k source symbols onto a length-n channel codeword, and the fidelity of reproduction at the receiver end is measured by the probability ε that the distortion exceeds a given threshold d. For memoryless sources and channels, it is demonstrated that the parameters of the best joint source-channel code must satisfy nC - kR(d) ≈ √(nV + k V(d)) Q-1(ε), where C and V are the channel capacity and channel dispersion, respectively; R(d) and V(d) are the source rate-distortion and rate-dispersion functions; and Q is the standard Gaussian complementary cumulative distribution function. Symbol-by-symbol (uncoded) transmission is known to achieve the Shannon limit when the source and channel satisfy a certain probabilistic matching condition. In this paper, we show that even when this condition is not satisfied, symbol-by-symbol transmission is, in some cases, the best known strategy in the nonasymptotic regime.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 5 )