By Topic

Design of Low-Complexity High-Performance Wavelet Filters for Image Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naik, A.K. ; S.G.G.S. Inst. of Eng. & Technol., Nanded, India ; Holambe, R.S.

This paper addresses the construction of a family of wavelets based on halfband polynomials. An algorithm is proposed that ensures maximum zeros at for a desired length of analysis and synthesis filters. We start with the coefficients of the polynomial and then use a generalized matrix formulation method to construct the filter halfband polynomial. The designed wavelets are efficient and give acceptable levels of peak signal-to-noise ratio when used for image compression. Furthermore, these wavelets give satisfactory recognition rates when used for feature extraction. Simulation results show that the designed wavelets are effective and more efficient than the existing standard wavelets.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 5 )