By Topic

Crack Depth Estimation by Using a Multi-Frequency ECT Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bernieri, A. ; Dept. of Electr. & Inf. Eng., Univ. of Cassino, Cassino, Italy ; Betta, G. ; Ferrigno, L. ; Laracca, M.

In many industrial application fields as manufacturing, quality control, and so on, it is very important to highlight, to locate, and to characterize the presence of thin defects (cracks) in conductive materials. The characterization phase tries to determine the geometrical characteristics of the thin defect namely the length, the width, the height, and the depth. The analysis of these characteristics allows the user in accepting or discarding realized components and in tuning and improving the production chain. The authors have engaged this line of research with particular reference to non-destructive testing applied to the conductive material through the use of eddy currents. They realized methods and instruments able to detect, locate, and characterize thin defects. In this paper, a novel measurement method able to improve the characterization of the crack depth is proposed. It is based on the use of a suitable multi-frequency excitation signals and of digital signal processing algorithms. Tests carried out in an emulation environment have shown the applicability of the method and have allowed the tuning of the measurement algorithm. Tests carried out in a real environment confirm the goodness of the proposal.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:62 ,  Issue: 3 )