By Topic

A Novel Graph-Based Estimation of the Distribution Algorithm and its Extension Using Reinforcement Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xianneng Li ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan ; Shingo Mabu ; Kotaro Hirasawa

In recent years, numerous studies have drawn the success of estimation of distribution algorithms (EDAs) to avoid the frequent breakage of building blocks of the conventional stochastic genetic operators-based evolutionary algorithms (EAs). In this paper, a novel graph-based EDA called probabilistic model building genetic network programming (PMBGNP) is proposed. Using the distinguished graph (network) structure of a graph-based EA called genetic network programming (GNP), PMBGNP ensures higher expression ability than the conventional EDAs to solve some specific problems. Furthermore, an extended algorithm called reinforced PMBGNP is proposed to combine PMBGNP and reinforcement learning to enhance the performance in terms of fitness values, search speed, and reliability. The proposed algorithms are applied to solve the problems of controlling the agents' behavior. Two problems are selected to demonstrate the effectiveness of the proposed algorithms, including the benchmark one, i.e., the Tileworld system, and a real mobile robot control.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:18 ,  Issue: 1 )