By Topic

Experimental and Analytical Study on DC Breakdown Characteristics of Butt Gap Condition in \hbox {LN}_{2}/\hbox {PPLP} Composite System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jae-Kyu Seong ; Department of Electronic Systems Engineering, Hanyang University, Ansan, Korea ; Won Choi ; Woo-Ju Shin ; Jae-Sang Hwang
more authors

Due to ac loss in superconducting materials, high cryogenic costs are inevitable when superconducting devices are operated in ac power networks. Thus, dc electric power networks would be regarded as a better choice for the operation of superconducting devices. In order to develop superconducting devices for a dc network, the dc insulation characteristics, which are much different from the ac insulation characteristics, should be clarified. In this paper, in order to investigate the dc insulation characteristics of polypropylene laminated paper (PPLP), which is generally used for dc superconducting cable, a dc breakdown test and a dc electric field analysis were performed. For the dc breakdown test, specimens with three layers of PPLP with one butt gap were fabricated. In order to reveal the breakdown characteristic of PPLP, a dc electric fields calculation in the media at the moment of breakdown was performed considering capacitive and resistive field distributions. Consequently, the capacitive electric field and resistive electric field distributions were determined using dc field analysis techniques and it was found that the butt gap edge is affected enough by the high field strength to cause the breakdown. Furthermore, it was deduced that the butt gap edge acted as a triple-junction point which causes the breakdown.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:23 ,  Issue: 3 )