By Topic

AC Loss in Pancake Coil Made From 12 mm Wide REBCO Tape

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Gomory, F. ; Inst. of Electr. Eng., Bratislava, Slovakia ; Souc, J. ; Pardo, E. ; Seiler, E.
more authors

The design of a superconducting coil from high-performance REBCO coated conductors is often complicated because of complex anisotropy of the critical current density Jc . It is important to understand how much detail of this feature must be taken into consideration in the prediction of maximum achievable current and the expected ac loss. We present the results of investigation performed with a small (ten turns, 60 mm inner diameter) coil made from SuperPower tape of 12 mm width. The knowledge of Jc(B,θ) determined on short sample allowed prediction of the maximum achievable current of the coil and the ac loss behavior. We have also investigated the effect of the tape nonuniformity. Our results confirm that the lateral nonuniformity when Jc at tape edges is lower than in its center leads to significant increase of ac loss. A longitudinal nonuniformity, in particular a reduction of critical current in some portion along the tape length, is hardly observable in the ac loss result. On the other hand, using a piece of tape with lower Jc in the innermost coil turn would significantly reduce the maximum current. We also present calculations showing the change in current-voltage curve and redistribution of ac dissipation in the case of nonuniform tape quality.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 3 )