Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Wide-Area Optimal Control of Electric Power Systems With Application to Transient Stability for Higher Order Contingencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zweigle, G.C. ; Schweitzer Eng. Labs., Inc., Pullman, WA, USA ; Venkatasubramanian, V.

A real-time stabilizing control method for responding to N-K contingencies, with large K, is developed utilizing network and machine time-synchronized measurements. The controls follow an optimality principle in driving rotor-angles to an acceptable equilibrium point, at minimum cost, by predicting state response trajectory to a collection of stepped structural changes, from an admissible set, according to a defined model. A cost metric suitable for mitigating rotor-angle instability is developed. Non-idealities in modeling, measurement latency, control availability, and actuation success are investigated. It is shown how control over system structure in a feedback formulation increases the capability to handle higher order contingencies. As an experimental example, a set of simultaneous N-3 transient stability related contingencies are stabilized for the IEEE 39-bus system. Furthermore, the response after control actuation failure is investigated and it is shown that the system remains driven to a valid stable equilibrium point.

Published in:

Power Systems, IEEE Transactions on  (Volume:28 ,  Issue: 3 )