By Topic

Robust H/spl infin/ control in nano-positioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Chuang ; Sch. of Eng. & Inf. Technol., Univ. of New South Wales at the Australian Defence Force Acad., Canberra, ACT, Australia ; I. R. Petersen

This study considers the use of robust H tracking control in a nano-positioning system. The nano-positioning system uses a high-performance monolithic multilayer piezoelectric stack actuator connected in series with an external capacitor, which is used to provide a measured voltage proportional to the charge on the piezoelectric actuator. The electrical energy applied to the piezoelectric actuator is transferred to mechanical energy leading to nano-scale motion. The mechanical part of this system consists of a spring mass mechanical system and a capacitive sensor is used to measure the displacement. The design of the controller takes into account the existence of hysteresis in the piezoelectric actuator by representing it as a sector-bounded uncertainty. The parameters in a non-linear model of the system are obtained from experimental measurements on the system. Experimental results show that the robust H controller yields accurate tracking of displacement and significantly reduces the hysteresis.

Published in:

IET Control Theory & Applications  (Volume:6 ,  Issue: 13 )