By Topic

Single-Layer Microstrip High-Directivity Coupled-Line Coupler With Tight Coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yongle Wu ; Sch. of Electron. Eng., Beijing Univ. of Posts & Telecommun., Beijing, China ; Weinong Sun ; Sai-Wing Leung ; Yinliang Diao
more authors

A novel symmetrical coupled-line circuit structure without patterned ground plane is proposed to design tight-coupling high-directivity couplers, which would be found in numerous applications in a microstrip RF front end because of its simple structure and inherent excellent compatibility. Based on a traditional even- and odd-mode technique, closed-form mathematical equations for both circuit electrical parameters and scattering parameters are obtained. Due to the use of two coupled-line sections placed in the vertical direction, the directivity of this novel coupler without any other compensation techniques can be enhanced while maintaining tight-coupling performance of almost 3 dB. For demonstrative purposes, three typical full-wave simulation examples with realized physical dimensions in microstrip technology are presented, indicating high directivity and tight coupling coefficient. Finally, a practical microstrip coupled-line coupler is designed and fabricated to operate at approximately 2 GHz. The measured results show good return loss, quadrature phase characteristics, high directivity, and strong coupling performances.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:61 ,  Issue: 2 )