Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Fast Detection of Dense Subgraphs with Iterative Shrinking and Expansion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hairong Liu ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Latecki, L.J. ; Shuicheng Yan

In this paper, we propose an efficient algorithm to detect dense subgraphs of a weighted graph. The proposed algorithm, called the shrinking and expansion algorithm (SEA), iterates between two phases, namely, the expansion phase and the shrink phase, until convergence. For a current subgraph, the expansion phase adds the most related vertices based on the average affinity between each vertex and the subgraph. The shrink phase considers all pairwise relations in the current subgraph and filters out vertices whose average affinities to other vertices are smaller than the average affinity of the result subgraph. In both phases, SEA operates on small subgraphs; thus it is very efficient. Significant dense subgraphs are robustly enumerated by running SEA from each vertex of the graph. We evaluate SEA on two different applications: solving correspondence problems and cluster analysis. Both theoretic analysis and experimental results show that SEA is very efficient and robust, especially when there exists a large amount of noise in edge weights.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 9 )