By Topic

New developments in processing cathodic arc plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. R. McKenzie ; Sch. of Phys., Sydney Univ., NSW, Australia ; Y. Yin ; E. G. Gerstner ; M. M. M. Bilek

Filtering of plasmas by curved solenoidal ducts is well established as a method of removing macroparticles. By analyzing the interactions of planar probes with the drifting plasma of the cathodic arc, new insights have been obtained into the operation of these ducts. Theoretical modeling of these interactions suggests, and experiment confirms, that the use of a separate biased electrode on the inside of the duct gives enhanced transmission without drawing excessive electron current. Theoretical modeling of a negatively biased planar electrode lying parallel to the drift velocity as well as experiment both show that ions are captured effectively onto the electrode producing a macroparticle free film at good deposition rates. The application of pulsed high voltage to the substrate placed at the exit of the duct is treated theoretically, and a model is proposed which gives a good agreement with the experimental concentration profile for a silicon surface coated and simultaneously implanted with titanium

Published in:

IEEE Transactions on Plasma Science  (Volume:25 ,  Issue: 4 )