By Topic

Dielectric recovery of copper chromium vacuum interrupter contacts after short-circuit interruption

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
E. Huber ; Tech. Univ. Wien, Austria ; K. Frohlich ; R. Grill

The recovery of a vacuum interrupter gap after short-circuit interruption was measured by application of an overshooting transient recovery voltage (TRV) several tens of microseconds after current zero. Copper chromium contact materials were employed varying in composition (25 and 50% chromium content), gas content, and production method. The gap failure was either pure dielectric or it was dominated by a significant postarc current. Therefore, postarc current phenomena were experimentally investigated focused on the relationship among the postarc current, the power frequency current amplitude, and the gap length. It was found that two postarc current maxima exist: the first strongly dependent on the power frequency current, and the second on the field strength. A correlation among postarc current facilitated failures, the ultimately dielectric recovery, and the erosion rate of the material was found. Strong indication is given that all of these effects are dominated by the metal vapor pressure rise given by the constricted rotating arc. A significant influence of the material properties can be drawn from these experiments, allowing a good estimation of the capability for short-circuit current interruption, thus providing a useful tool for material development

Published in:

IEEE Transactions on Plasma Science  (Volume:25 ,  Issue: 4 )